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Abstract. We study the critical exponents, eigenoperators and the phase diagram of the 
N = 2 Ashkin-Teller (AT) model in two dimensions using a Monte Carlo renormalisation 
group. We pay special attention to the marginal operator responsible for the non-universal 
behaviour. The crossover exponent is measured and used to numerically calculate the 
thermal exponent of the eight-vertex model and of the AT model near the Potts-four-point, 
giving better results than a direct determination, since the crossover operator is not affected 
by the additional AT marginal operators. 

1. Introduction 

Several techniques have been used to study the two-dimensional N-colour Ashkin- 
Teller model in recent years. Mean-field calculations, Monte Carlo simulations [ 11, 
transfer matrix analysis [2], time-continuous Hamiltonian studies [3] and 1/ N 
expansions [4] have all been used in trying to obtain information about the physics 
of the model. Nevertheless this is not an altogether closed problem. It seems natural 
to further investigate this model by means of yet other techniques. Thus we propose 
to employ the Monte Carlo renormalisation group ( MCRG), a well established method 
[5] which has been successfully applied to a wide range of problems. 

In this paper we present a MCRG study of the N = 2  Ashkin-Teller model [6] 
because we feel that it is a suitable first step in order to understand the more general 
model. In particular we want to understand the role played by the marginal operators 
and how their calculation depends on the truncation of the Hamiltonian. 

Marginal operators of other models, however, have shown to be rather difficult to 
treat by these methods. For instance, in an earlier work [7], Swendsen and Krinsky 
had difficulties in obtaining good estimates for the marginal eigenvalue and operator 
in the Baxter model. This problem was later tracked down to the inadequate number 
and type of operators kept in the truncation. Results were much improved by including 
a four-spin operator coupling both sublattices [5]. Marginal operators have also been 
responsible for the slow convergence of MCRG iterations in the four-state Potts model 
[8], a problem that does not appear in the Baxter-Wu model [9], which is in the same 
universality class. It is worth mentioning that dealing, in a satisfactory way, with the 
marginal operators of the X Y  model [lo] by the MCRG method has not yet been 
achieved. 
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In 0 2 we describe the model and several known results and conjectures. There 
follows a brief description of the MCRG that we use, in which we introduce the notation 
as well as the most relevant features of the method. In Q 3 we present our results for 
the non-universal exponents, marginal operators and eigenvalues, crossover exponents 
and phase diagram. We discuss the effects of the basis truncation and of the marginal 
operator in measuring such quantities. In particular we obtain a very precise value 
for the thermal eigenvalue very near the bifurcation point (four-state Potts universality 
class) by looking at a related quantity, the crossover operator, whose numerical 
determination is shown not to be affected by the additional marginal operator at that 
point. We have also noted that in certain regions, a fixed point is reached faster by 
doing blockings of products of spins of different types than by rather blocking them 
independently. 

2. Description of the model and the method 

The two-dimensional N = 2 Ashkin-Teller model (ATM) consists of two Ising systems 
coupled pairwise by four-spin interaction of strength K 4 .  The model Hamiltonian is 
given by 

where i, j label lattice sites (we will be concerned with square lattices, nearest-neighbour 
interactions and the symmetric case K ,  = K 2  = K ) .  After a duality transformation the 
model can be exhibited as a staggered version [ 111 of the symmetric eight-vertex model, 
which permits the location of the critical temperature when the transition is unique 
( K 4 s K ,  see figure 1). It is given by [12] 

= sinh 2K. (2) 
In addition there is also a relation between the critical exponents of those models, 
namely [13] 

where yeT and y;' are the leading thermal critical exponents of the Ashkin-Teller and 
eight-vertex models. In (3) y;' is given by the famous Baxter formula [14] 

(yy-22)(yeT-2) = 1 (3) 

which shows 
the 8v model 

(4) 

the dependence of the critical exponent on the four-spin coupling A of 
related by K4 by [15] 

yT 8 V -  --cos-'(-tanh 2A) 
IT 

1 -tanh(2K4) 
tanh(2A) = 

tanh (2K4) ' 

The non-universal behaviour is also exhibited by the critical index of the electrical 
operator of the ATM. It obeys the so-called extended scaling relation [16] 

(6) 
However, the magnetic critical exponent, yCT, does not depend on the coupling 
constant. It continues to be equal to the Ising value of 1.875, showing that the marginal 
operator is not able to change the anomalous dimension of the spin operator ( ui or pi). 

y t T  = a(6 - y:'). 
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The situation is completely different for K ,  greater than K .  In this case the model 
undergoes two phase transitions which are both expected [ 171 to be in the universality 
class of the Ising model, although there are no exact results for this region, except of 
course in some limiting cases. 

We now give a description of the method we employ in order mainly to establish 
notation and emphasise our goals. 

A heat-bath Monte Carlo and a 2 x 2 blocking real space renormalisation scheme 
have been used. Each family of spins has been renormalised independently. We 
determine the phase diagram by comparison of two lattices [18], of initial sizes differing 
by a factor of b = 2 ,  at different renormalisation stages such that their sizes are the 
same. Differences in the measured correlations are then mainly due to renormalisation 
effects. As usual we write the Hamiltonian at the nth stage of renormalisation 

as a linear combination of products of either spins of the same family or combinations 
of both types (refer to table 1 for notation). The effects of the truncation will be 
discussed below. The determination of the eigenvalues of the linearised RG transforma- 
tion is done by diagonalising the matrix T,,, which is obtained from the generalised 
specific heats 

and 

We are interested in studying the non-universal critical line, determining the eigenvalues 
to check a well known conjecture by Kadanoff [13] and, in particular, looking at the 
subleading thermal eigenvalue, which is marginal. The eigenoperators are determined 
by the eigenvectors of Tap. The need to include in the truncation operators which 
couple spins in the same sublattice has been noticed, in order to stabilise the result 
for the marginal eigenvalue under further increases in the truncation basis. 

Table 1. Notation for the operators used in the MCRG analysis 

Odd sector Even sector 
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Errors have been determined by separating our data into roughly ten different 
blocks of Monte Carlo configurations, quoted results being obtained from the whole 
set. Measurements of the correlation times were also performed, in different regions 
of the parameter space, to be able to judge whether proper thermalisation had been 
achieved, as well as to determine run lengths. 

In the region where the critical lines are not unique, but related by duality, the 
transition is driven by an Ising type of symmetry breaking for the product variable 
q = aipi. We have found that by doing RG blocking of these 7 variables the fixed point 
is reached faster than by doing the blocking on the CT and p variables independently. 
These fixed points are detected by looking at correlations of the 7, although of course 
one loses any information on the (T and p individually. 

Typically, for unrenormalised lattices of 32 x 32, runs were about 1.2 x lo5 MCS 
long, with about an additional 10% discarded for thermalisation, an amount consistent 
with our measurements of correlation times. Results in table 4(b) refer to similar 
length runs but on an initially 16x 16 lattice. 

3. Results 

In figure 1 we show the phase diagram of the N = 2  AT model, obtained by the 
comparison of the correlations of the two lattices (see figure 2). The data for the line 
AO, which are exactly known, give an idea of the high precision achieved by this 
calculation even when small lattices are used. We next present in tables 2 and 3 the 
leading eigenvalues (thermal and magnetic) of the model for K4 = 0.06. Several results 
for the thermal eigenvalue are plotted against K4 in figure 3. In tables 4(a) and 4(b) 
we show results which are related to the marginal operator of the AT model. We have 
accompanied the dependence of its eigenvalue yM on the truncation size of the basis 
as well as on the nature of its operators. In order to reveal the effect of each operator 
we have looked at the projections of the marginal operator onto the subspaces spanned 
by these different basis. As it can be seen from table 4(a) the effect of the two-spin 
operators is very small and tends to be nil when the number of four-spin operators is 

I 

0 1  , , , , , , , , , 6: , . ,  , , , 
-0.6 -0  L - 0 . 2  0 0 2  0.4 0.6 0.8 

KL 

Figure 1. Phase diagram of the N = 2 Ashkin-Teller model. 
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Figure 2. F( L, L’) is the truncated nearest-neighbour correlation function of a lattice of 
initial size L and renormalised size L’; K = 0.16. 

Table 2. Thermal eigenvalues of model for K =0.4  and K4=0.06; conjectured value 
y,= 1.079. NR is the renormalisation stage; S, is the type of operator included in the 
truncation; L is the size of the unrenormalised lattice. 

N R  S, L = 3 2  L =  16 L = 8  

1 S 2 ,  SI, 1.014(7) 1.014(3) 1 .ooo (4) 
s4 1.057 (4) 1.064 ( 3 )  1.057 ( 5 )  
SI2  1.056 ( 5 )  1.066 (2) 1.057 (7) 
S6 1.057 (5 )  1.068 (2) 1.059 (6) 

2 S2,  Si0 1.038 (4) 1.028 (2) 
s4 1.077 (3)  1.070 ( 5 )  
s, 2 1.078 (4) 1.072 (3) 
’ 6  1.081 (4) 1.080 (2) 

3 S,, SI, 1.050 ( 9 )  
s4 1.090(10) 
SI 2 1.090 ( 10) 
s6 1.090(10) 

increased. Two-spin operator contributions also diminish with the renormalisation 
group iterations. In table 4( 6) the results of using bases with only four-spin operators 
are shown. Of course these bases are not useful for determining the usual leading 
eigenvalues; they do, however, show the importance of the four-spin operators concem- 
ing the characterisation of a marginal direction. 

The thermal eigenvalue results shown in table 2, as previously noted, are in good 
agreement with equations (3), (4) and (5);  however, as we approach the bifurcation 
point (K4 = 0.2746), the results for the thermal eigenvalue get worse. This is due to 
the fact that both the marginal and thermal eigenoperators have large projections onto 
the first neighbour’s operator, when restricted to the considered subspaces. As a matter 
of fact, the eigenvalue seems unable to decide whether it belongs to one or the other 
operator, giving an intermediate result between the conjectured thermal and marginal 
values. This problem can be circumvented by calculating the crossover exponent, 
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Table 3. Magnetic eigenvalues of model for K = 0.4 and K ,  = 0.06; exact value yH = 1.875. 
N R  is the renormalisation stage; Sa is the type of operator included in the truncation; L 
is the size of the unrenormalised lattice. 

N R  sa L = 3 2  L =  16 1=8 

1.883 (1) 1.879 (1) 1.876 (2) 
1.882 (2) 1.876 (2) 1.879 (3) 
1.881 (2) 1.875 (1) 1.879 (3) 

1.876 (1) 1.879 (1) 
1.875 (3) 1.875 (2) 
1.875 (2) 1.876 (2) 

1.876 (1) 
1.874 (2) 
1.875 (2) 

Table 4. Components of the marginal operator with systematic increase of the truncation 
basis ( y M  is the marginal exponent). ( a )  Two- and four-spin operators are included and 
L = 32; ( b )  only four-spin operators are included and L = 16. 

( a )  
1 -0.36(1) 

-0.36 (2) 
-0.07 (2) 
-0.07 (2) 

2 -0.34(2) 
-0.34 (2) 
-0.07 (2) 
-0.06 (2) 

3 -0.46(3) 
-0.46 (3) 
-0.07 (3) 
-0.07 (3) 

1 -0.33(5) 
( b )  

-0.074 (7) 
-0.024 (6) 
-0.002 (7) 

-0.55 
-0.58 
-0.52 
-0.56 

-0.55 
-0.56 
-0.5 1 
-0.54 

-0.56 
-0.58 
-0.50 
-0.54 

0.84 
0.82 -0.03 
0.74 -0.20 
0.73 -0.18 

0.84 
0.83 0 
0.75 -0.22 
0.73 -0.19 

0.83 
0.82 -0.01 
0.73 -0.24 
0.71 -0.22 

1.00 
0.92 
0.93 
0.93 

0.37 
0.36 -0.08 

0.37 
0.36 -0.09 

0.39 
0.38 -0.11 

0.39 
0.37 0.02 
0.36 0.02 0.01 

which is done by including operator SI8 (see table l ) ,  and using [13]: 

The reason for this is that the crossover operator has a very small, actually consistent 
with zero, projection onto the marginal operator even in the reduced bases that are 
being used. Thus there is no competition in this case and a very clean result is obtained. 
For example, for K4 = 0.264 we obtain directly y$* = 1.276( 8)  whereas the conjectured 
values is 1.436. However for y$; we obtain 0.23(2), which by ( l l ) ,  leads to yeT= 
1.434(6), a result that confirms the conjecture much more strongly. 

We have also calculated the eigenvalues in the oc line of figure 1,  which is not 
exactly known and whose location has been determined by the lattice comparison 
method. The results are consistent with it being in the Ising universality class. 

x F =  l/X,AT, which leads to yeT = (3 - 2 y 3 ( 2  - y g ) .  ( 1  1 )  
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Figure 3. Thermal exponent. The curve is obtained from equations (3), (4 )  and (5) .  

In conclusion, we have studied, via MCRG, the N = 2 Ashkin-Teller model which 
presents several interesting features such as non-universal (Baxter) transitions, marginal 
operators and logarithmic corrections (four-state Potts model). We have systematically 
studied the improvements brought about by adequate enlargements of the set of 
operators used in the truncations. These types of procedure leads to an identification 
of the kind of operator that must be included in order to treat properly the marginal 
operator. We have noticed, on the other hand, that near the bifurcation point (point 
0 of figure 1)  these improvements might not be sufficient to obtain precise estimates 
for the thermal eigenvalue, and that the introduction of an indirect way of calculating 
it, such as calculating the crossover exponent and using (1 l),  led to much better results. 
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